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We have developed an embedded cluster method for the calculation of the electronic structure and properties
of point defects in cubic ZrO2 nanocrystallites. The accuracy of the method is tested through a detailed
comparison of the atomic and electronic structures of the perfect lattice and defect properties with the results
of periodic calculations. The optical absorption and magnetic properties of oxygen vacancies with charge states
ranging from +2�e� to −2�e� are calculated. Furthermore, the method can be used to study the magnetic, optical,
photoluminescence, chemical, and other properties of pure and doped ZrO2 powders and their mixtures with
other materials.
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I. INTRODUCTION

Zirconia �ZrO2� is a material of great interest both scien-
tifically and in terms of its technological applications. Its
high resistance to thermal shock makes it one of the best
refractive materials known. It also exhibits high ionic con-
ductivity at high temperatures once doped with aliovalent
oxides such as CaO, MgO, and Y2O3. These properties have
been exploited in solid oxide fuel cells, catalytic supports,
and oxygen gas sensors. Zirconia, along with hafnia, has also
been proposed as a replacement for silicon dioxide as a gate
layer material in metal-oxide semiconductor devices due to
its high dielectric constant and thermal stability under pro-
cessing conditions.1,2

Most applications of ZrO2 are based on properties of its
less stable tetragonal and cubic polymorphs stabilized by ei-
ther doping or size confinement as in thin films and nano-
crystals. The most common method of stabilization is doping
with aliovalent cations such as yttrium or calcium �see, for
example, Refs. 3–5�. More recently, it has been suggested
that ZrO2 nanocrystallites below a certain particle size of the
order of 40 nm adopt a cubiclike structure at room tempera-
ture �see, for example, Refs. 6–8�. The critical particle size
and the mechanisms of the cubic phase stabilization are not
yet fully established. Recent papers suggest that the particle
size below which the cubic phase of pure ZrO2 is stable is
rather less than 5 nm.9 Factors promoting the stabilization of
the better-studied tetragonal phase of ZrO2 nanoparticles
were reviewed recently in Ref. 10 and are most probably also
relevant to the cubic phase. Due to the fact that, in nanopar-
ticles, the surface atoms may account for a large or even
dominant fraction of all atoms, their phase stability is deter-
mined by a fine balance of the bulk and surface energy11–13

and can be tuned by the surface excess of one of the com-
ponents of a doped system.14,15 In most experiments the te-
tragonal phase of ZrO2 is thought to be stabilized by the
cluster size, and/or by coating �e.g., with MgO �Ref. 14� and
Al2O3 �Ref. 15��, by doping �e.g., with Ce �Ref. 16��, and by
oxygen vacancies, which are always present inside

nanoparticles.15,16 Spectroscopic techniques, such as optical
absorption16 and electron paramagnetic resonance �EPR�,17

can provide useful information about the nature of
vacancies16 and impurities as a function of their position in-
side nanocrystallites, but the results of these measurements
require further theoretical analysis.

Better understanding of the electronic structure, electron
and hole trapping, chemical properties, and mechanisms of
photoinduced processes in ZrO2 nanostructures can be
achieved using accurate electronic structure computational
techniques. In particular, an embedded cluster method
�ECM� in conjunction with density-functional theory �DFT�
and hybrid density functionals provides the flexibility and
accuracy required for studying these complex systems. In
this method, a system is partitioned into two coupled sub-
systems: a region of interest, considered quantum mechani-
cally, and its environment, considered classically. Similar
methods �also known as quantum-mechanical/molecular me-
chanics �QM/MM� models� have been applied to a wide
range of scientific problems in various systems, for example,
the structure and reactivity of catalysts and large organic
molecules.18 ECM has been used successfully to study defect
properties in crystalline and amorphous SiO2,19–21 MgO,22

CaO,23 Mg2SiO4,24 HfO2,25,26 and 12CaO·7Al2O3.27 It has
also been applied to the study of defects in MgO nanopar-
ticles and at interparticle interfaces of MgO.28,29 We note that
different types of embedding potential are required for highly
ionic materials, such as MgO,22 and materials with polar
bonds, such as SiO2.19–21 In this paper we develop a reliable
and robust embedded cluster method for ZrO2 and apply it to
study the properties of oxygen vacancies in cubic ZrO2 nano-
crystallites. Furthermore, this method can be used to study
the magnetic,30 photoluminescence,16 chemical, and other
properties of pure and doped ZrO2 powders and their mixture
with CeO2 and other materials.14–16,30

The rest of the paper is organized as follows. First, we
describe the details of the embedded cluster method and pa-
rametrization developed for cubic ZrO2 �c-ZrO2�. Then, we
present the results obtained for several charged states of the
oxygen vacancy and compare our results with experimental

PHYSICAL REVIEW B 78, 235432 �2008�

1098-0121/2008/78�23�/235432�11� ©2008 The American Physical Society235432-1

http://dx.doi.org/10.1103/PhysRevB.78.235432


data where available. Finally, we discuss the problems with,
and limitations of, our approach.

II. EMBEDDED CLUSTER METHOD

In the method described in this section, “region of inter-
est” refers to a region of the system �bulk solid, surface, and
nanocrystallite� in which a defect induces a strong modifica-
tion of the local atomic and electronic structure, while the
“environment” provides an embedding potential for it. Many
existing QM/MM schemes share common features �see, for
example, Ref. 18� but differ in their method of implementa-
tion of the short-range embedding potential, long-range po-
larization of the environment, and the interaction of the QM
and MM subsystems.

In our method, the total energy includes the contribution
due to the interaction of the QM region with the rest of the
host lattice, the ionic and electronic polarization of the lattice
by the QM region, and the reciprocal effect of the lattice
polarization on the QM region itself. Thus, the electronic
structure of the QM region is consistent with the perturbation
which it induces on the polarizable environment and vice
versa. This scheme is implemented in the computer code
GUESS.31 Below, we describe briefly the implementation of
this method for modeling a defect inside a nanocrystal. First,
we present a fairly general description of the method and
then describe the details of the implementation pertaining to
a particular case of vacancies in cubic ZrO2 nanocrystallites.

A. Nanocrystal and its regions

We consider nanometer-sized nanocrystals, henceforth re-
ferred to as NCs. Each NC is constructed from material-
dependent building blocks, as discussed below. We note that
this technique has flexibility in treating coated nanocrystals
and assemblies of similar and different nanocrystals.28,32

A NC is divided into two regions: region I, in which a
defect or other system of interest is located, and the remain-
der of the nanocrystal, region II �see Fig. 1�. Generally, re-

gion I can be located anywhere inside or at the surface of the
NC.29 All atoms in region I are free to relax, and the total
energy of the system is minimized with respect to their co-
ordinates, while atoms in region II remain fixed in their lat-
tice positions. Thus, region I represents a polarizable part of
the system and region II mimics the infinite �in the case of
bulk crystals� or finite �in the case of nanoparticles� environ-
ment for atoms in region I.

Region I is divided further into three subregions �Fig. 1�:
�i� an inner part, which is described quantum mechanically
�the “QM cluster”�, �ii� an outer part, which is described
using the classical shell model,33 and �iii� an interface region
between them. The sizes of region I and of the QM cluster
are chosen so as to satisfy several criteria. First, the QM
cluster should be large enough to reproduce the main fea-
tures of the electronic structure of the material and include in
full the region in which defect-induced bond breakage and
perturbation of the electronic structure take place. Second,
region I should be large enough to accommodate the lattice
distortion induced by the defect in the QM cluster. Generally,
two distinct cases can be considered: �i� the specific NC is
modeled in its entirety or �ii� the NC is so large or the defect
is so far from its surface that the particular shape and surface
structure of the NC is irrelevant. In the latter case, the NC
used in calculations should be large enough for region II to
mimic accurately the Coulomb and short-range potentials
provided by the remaining part of the system. This criterion
can be met if the electrostatic potential inside region I con-
verges rapidly with the size of the NC. To achieve this, the
nanocluster is constructed from material-specific structural
elements, which may differ from lattice unit cells. The struc-
tural elements are designed so that their dipole and quadru-
pole moments are either zero or cancel each other out on
average. For example, in the case of MgO a Mg4O4 cubic
cluster can be such a structural element. In the case of
�-quartz SiO2, a convenient structural element is a Si�O1/2�4
tetrahedron,19–21 while more complex structures have been
designed for forsterite �Mg2SiO4�.24

The convergence of the electrostatic potential depends on
the shape of the NC; it converges most rapidly for spherical
nanoclusters. Much more complex NCs may need to be used
in studies of assemblies of nanoparticles, powder grains, and
their interfaces.28,29

B. QM cluster

A QM cluster should include the region in which the per-
turbation of the electronic structure and local geometry can-
not be described reliably using a classical shell model. In
practice, its size is always chosen so as to balance the fea-
sible computational cost with the required accuracy of calcu-
lations, which is defined by the method used for calculating
the QM contribution to the total energy.

The compactness of the cluster is defined as the ratio �
=nQM-QM /nQM, where nQM is the total number of neighbors
of the QM atoms and nQM-QM is the number of such neigh-
bors that are in the QM region themselves. � is a convenient
property for characterizing the relation between the size and
the shape of the QM cluster.

FIG. 1. �Color online� �Left� Schematics of the building block
used to generate the nanocluster. Dark small spheres are oxygen
atoms and bright large spheres represent Zr atoms. Values next to
each Zr center show the fraction of the specific atom contributing to
the building block. �Right� General scheme of the embedded cluster
model for a nanocrystallite.
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For example, atoms inside the QM cluster are coordinated
only with other QM atoms, but atoms at the boundary of the
cluster are coordinated with both quantum and classical at-
oms. Thus, a larger compactness for a given cluster size cor-
responds to a smaller interface area. Using the QM clusters
with the largest value of � allows one to minimize the per-
turbations of the electronic structure induced by the QM
cluster boundary.

It is advantageous to use stoichiometric QM clusters, i.e.,
those in which the ratio of different atomic types is the same
as in the parent compound. In this case, the QM cluster is
neutral and the number of electrons is well defined. Nonsto-
ichiometric clusters are charged. The integer number of elec-
trons reflects either excess or lack of electron charge within
the cluster, and this excess charge can affect absolute as well
as relative positions of the energy levels.

C. Classical environment

The interaction of the atoms in the classical part of region
I with each other and with the atoms of region II is described
using a classical force field �FF�. The FF has two compo-
nents: the electrostatic or Coulomb interaction, and the short-
range non-Coulomb interactions. In the spirit of the shell
model,33 the former is represented using pairs of point
charges �Qcore and Qshell� that can be associated with each
classical ion, while the latter is represented using pairwise
and/or many-body potentials, such as the Buckingham-type
potential

UBuck�rij� = Ae−rij/� −
C

rij
6 , �1�

where rij is the distance between a pair of atoms. Parameters
A, �, and C are fitted, together with the values of Qcore and
Qshell so as to reproduce known properties of the ideal crys-
tal, including its structure, high- and low-frequency dielectric
constants and elastic tensor.

Region I is polarizable, i.e., all centers in this region are
allowed to relax. Atoms represented using the shell model
contribute to the ionic polarization through their displace-
ments, while the electronic polarization is reproduced by the
displacements of the Qshell with respect to the corresponding
Qcore. The energy cost associated with such displacement is
given by 1

2k�rcore−rshell�2, where rcore and rshell are the coor-
dinates of the Qcore and Qshell, respectively, and k is a fitting
parameter related to the electronic polarizability of the sys-
tem.

To minimize the mismatch between the QM and classical
parts of region I, we fitted the parameters of the force field
using the following approach. First, the equilibrium lattice
parameters of an ideal crystal are calculated using periodic
model and the same density functional �for example, B3LYP�
and basis sets that will be used in subsequent embedded
cluster calculations. Then the force field is fitted so as to
reproduce the calculated lattice parameters. By construction,
this force field is consistent with the Hamiltonian and the
basis set used within the QM cluster. This implies that a new
force field needs to be developed for each combination of the
density functional and the basis set. In most cases, however,

the difference between the corresponding FF parameters is
small.

D. Interface region

The interface region is introduced in order to provide a
seamless border between the QM cluster and classical ions in
region I. The interface atoms perform a dual role: they are
considered quantum mechanically along with the atoms of
the QM cluster and, at the same time, their interaction with
the classical atoms in region I is included via interatomic
potentials. Therefore, the parametrization of the interface at-
oms consists of two parts: �i� an effective pseudopotential

V̂Int�r� for the interaction with the electrons and nuclei of the
QM cluster, and �ii� a short-range corrective potential U�rij�,
which provides the correct potential-energy surface for the
interface atoms and their neighbors.

The choice of the pseudopotential V̂Int depends on the
electronic structure of the system. In the case of ionic com-
pounds, such as MgO, the interface Mg ions �Mg�� can be
well represented using large-core semilocal effective pseudo-
potentials �ECPs�.34 On the other hand, in polar systems,

such as SiO2, V̂Int should reproduce the ionic-covalent char-
acter of the Si-O bond.19,21

While V̂Int is generated so as to provide an accurate rep-
resentation of the electronic structure at the interface, it may
not reproduce the lattice structure satisfactorily. To achieve
this, we use a classical corrective potential U�rij�, which de-
pends upon the atomic coordinates of the interface atoms and
their neighbors only. A procedure used to generate this po-
tential is described in Sec. III.

III. IMPLEMENTATION OF THE EMBEDDED CLUSTER
SCHEME FOR c-ZrO2

Small �3–5 nm� cubic and tetragonal ZrO2 NCs synthe-
sized using different methods often exhibit almost spherical
shapes in transmission electron microscopy �TEM� images
�see, for example, Refs. 15 and 30�. We note that the relation
between the shape and size of the NCs and the phase stability
of ZrO2 is nontrivial, as was shown recently in Ref. 35.
Below, we describe the details of an embedded cluster model
for studying defects in such NC’s and present the results for
oxygen vacancies in the center of ZrO2 NCs. However, the
same approach could be applied to modeling vacancies any-
where inside an NC as well as for studying different cluster
shapes.

Quantum-mechanical calculations carried out in this work
use DFT with the B3LYP density functional. There is a gen-
eral consensus that this functional provides fairly accurate
geometrical parameters and electronic structures of both
wide-band-gap insulators and semiconductors.36 To choose
the geometrical parameters of c-ZrO2 we first calculated the
geometric and electronic structure of a perfect infinite crystal
using a periodic model and the CRYSTAL 06 code.37 The basis
set for oxygen atoms was taken from Ref. 38. It includes 14s,
6p, and 1d primitive Gaussians contracted to 1s, 3sp, and 1d
shells using an �8/411/1� scheme and has been used previ-
ously in studies of a large number of oxides.38 The standard
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LANL2DZ basis and its corresponding effective core
pseudopotential were used for Zr atoms. This basis set con-
sists of 6s, 6p, and 4d primitive Gaussians contracted to 3 sp
and 2d shells using a �411/31� scheme. The calculations were
performed for a 96-atom supercell using a Monkhorst-Pack
grid of nine k points. The internal coordinates of the super-
cell were fixed, while the lattice constant was varied so as to
minimize the total energy. The value obtained for the lattice
constant is 5.07 Å, which is close to the experimental value
obtained for the high-temperature cubic phase.

A spherically shaped NC was built using � 1
2Zr�6� 1

8Zr�8O8
structural units as shown in Fig. 1. It should be noted that Zr
atoms are placed on the faces and corners of the structural
units, and they will be shared with one and seven other struc-
tural units, respectively, in the NC, so they will effectively be
considered as 1/2 and 1/8 of atom for the construction of the
NC. The choice of this structural element is convenient be-
cause it is electrically neutral and has zero dipole and quad-
rupole moments. Distances between atoms are equal to those
in the perfect lattice. This is justified because it has been
demonstrated that the interatomic distances in the tetragonal
phase NC’s are equal to those in bulk samples.10 Of course,
this approach neglects more subtle effects of surface relax-
ation, which may affect results for small NC’s and for de-
fects near surfaces.

Figure 2 shows the on-site electrostatic potential calcu-
lated for cubic ZrO2 NCs of two different radii �RNC�. For the
RNC=22 Å the values of the on-site electrostatic potential
inside region I of RI=10 Å are converged to within 0.1 eV.
NC of this radius could be also used to study defects in the
bulk of cubic ZrO2. In the following, we use a nearly spheri-
cal NC �RNC=22 Å�, which contains 1570 ions. We note,
however, that different procedure could be used to study NCs
of some particular shape and size,39 including optimizing the
geometry of the whole NC.

In this work we used a 36-atom QM cluster �shown in
Fig. 3�, which includes 12 Zr and 24 O atoms. Each of the O

atoms in this QM cluster is coordinated by at least two Zr
atoms, also considered quantum mechanically. This is the
only compact ��=0.48� average-size QM cluster, which al-
lows us to investigate the electronic structure of oxygen va-
cancies and local lattice deformation induced by them at a
reasonable computational cost. However, structure of ZrO2 is
such that compact QM clusters are usually nonstoichiometric
and vice versa. At the same time, if ionic charges in the
classical environment deviate from their formal values, the
number of electrons that should be assigned to nonstoichio-
metric QM clusters is not uniquely defined. Therefore, in this
study we used formal classical charges �i.e., +4�e� for Zr and
−2�e� for O�. The effect of this approximation on the elec-
tronic structure of ZrO2 is discussed in Sec. IV B. The elec-
tronic structure of the embedded QM cluster is calculated
using the B3LYP density functional, as implemented in the
GAUSSIAN package,40 and the same basis set as the one used
in the periodic calculation.

The short-range interactions between the classical atoms
are described using the Born-Mayer potential A exp�−rij /��,
where parameters A and � were developed by Smirnov et
al.41 �A=1610.28 eV and �=0.34 Å�. Zr ions are repre-
sented using a formal ionic charge of +4�e� and they are not
polarizable. The O ions are represented using the shell
model, with core and shell charges of +2�e� and −4�e�, re-
spectively, and a spring constant with a value of k
=200.1 eV /Å2.

In order to check the performance of these potentials, we
compared the values of different properties of c-ZrO2 calcu-
lated using this set of interatomic potentials with those ob-
tained from different sources �see Table I�. Due to the high
temperatures required to stabilize bulk c-ZrO2, measuring
these properties for a pure cubic phase is difficult. The lattice
parameters and the bulk modulus have been compared with
the experimental data available. Elastic moduli have been
compared with the data extrapolated from doped phases of
c-ZrO2. No experimental data have been found for the bulk
dielectric constant so comparison was made with accurate ab
initio calculations. In general, the interatomic potential set
reproduces correctly the values of the different properties
considered, with the largest discrepancy for the values of the
dielectric constant and bulk modulus.

In many cases, interatomic potentials may need to be ad-
justed further in order to reproduce the structural parameters

FIG. 2. On-site electrostatic potential inside finite spherical
nanoclusters of RNC=16 Å �circles� and RNC=22 Å �triangles�. R
is the distance from the center of the nanocluster to a respective
lattice site. Dotted vertical lines indicate radius of the QM cluster
��5 Å� and that of region I ��10 Å�.

FIG. 3. �Color online� Structure of the embedded QM cluster
used in this work. The position of the vacancy in the cluster has
been represented with a small sphere connected by dotted lines to
nearest-neighbor Zr atoms �marked with an arrow�.
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obtained from the periodic calculation, thereby to avoid cre-
ating a mismatch between the quantum and classical regions
of the embedded cluster model, and to prevent the build up
of strain in the system. In this particular case, however, the
interatomic distances obtained using the classical model dif-
fer only by 0.1% on average from the values obtained using
the periodic model, making it unnecessary to refit the param-
eters.

The interface region between the QM cluster and its clas-
sical environment includes all Zr atoms within 5 Å of the
QM cluster. In this work, these atoms, denoted by Zr�, are
represented using large-core LANL1 ECPs �Ref. 34� and
have no basis functions associated with them. This type of
interface proved to be appropriate for ionic materials, such as
MgO and CaO. The results below demonstrate that it pro-
vides sufficiently accurate results for vacancies in ZrO2.

We used the following polynomial form for the correcting
potential U�r� acting between the interface Zr� atoms and
QM oxygen atoms:

U�rij� = C1�rij − R0�2 + C2�rij − R0�3 + C3�rij − R0�4

+ C4�rij − R0�5, �2�

where Ci and R0 are parameters to be fitted and rij is the
O-Zr� distance. The parameters of this potential were fitted
so as to minimize the lattice distortion at the interface. This
is done in two steps: First, we selected one of the oxygen
atoms at the boundary of the QM cluster and calculated a
potential-energy surface �PES1� for small displacements of
this atom along the direction of its bond to the nearest inter-
face Zr� atom. Then we calculated a potential-energy surface
for equivalent displacements of an O atom along a Zr-O
bond inside the QM cluster �PES2�. The difference between
PES1 and PES2 was fitted with the polynomial to obtain the
corrective potential. The optimal parameters are R0
=1.54616 Å, C1=19.8062 eV /Å2, C2=−29.1185 eV /Å3,
C3=15.1105 eV /Å4, and C4=−2.6660 eV /Å5.

We note that the corrective potential and parametrization
scheme described above are best applicable to a simple case
in which all QM O atoms have the same number and con-

figuration of neighboring quantum-mechanical and ECP at-
oms. However, this is not the case even in cubic ZrO2. In
particular, in the case of Zr12O24 QM cluster, some of the
QM O atoms have one, two, or three Zr� ECP neighbors.
Thus, the simple corrective potential U�rij� does not prevent
the lattice distortion at the interface completely.

IV. VALIDATION OF THE EMBEDDED CLUSTER MODEL

In order to check the accuracy of our embedded cluster
model we compare the atomic structure and electronic prop-
erties of the perfect c-ZrO2 lattice calculated using the em-
bedded cluster and periodic models; we divide the analysis
into several areas, detailed below.

A. Geometry

We performed a so-called perfect lattice test, in which a
defect-free QM cluster is embedded in the defect-free envi-
ronment and the energy of this system is minimized with
respect to the atomic coordinates. If the embedding potential
is reproducing the effect of the crystalline environment ac-
curately, there should be no geometry relaxation in this case
and the electronic structure of the embedded cluster should
correspond well to the electronic structure of the infinite
crystal.

In practice, we find that local lattice distortions at the
interface are always present, as discussed at the end of Sec.
III. However, their magnitude is small and the cubic symme-
try of the lattice is maintained. For example, in the case of
the embedded Zr12O24 QM cluster the angles between the
nearest neighbors �nns� change by �1.0° on average. Com-
pared with the reference Zr-O distance of 2.20 Å, the Zr-O
bonds in the classical polarizable region remain almost un-
changed �the change is below 0.02 Å�, while those in the
central area of the QM cluster become �0.05 Å shorter. The
largest distortions are at the interface itself: ZrInt-OQM are
�0.1 Å shorter, while ZrInt-OClass are �0.1 Å longer than
the Zr-O reference value.

B. Electronic structure

Figure 4 shows the atom-projected density of states for
c-ZrO2, calculated using both periodic and embedded cluster
models. The qualitative features of the electronic structure
obtained using both methods are in good agreement with
each other, and with results reported previously.42–44 In par-
ticular, the embedded cluster calculation predicts a single-
particle band gap of 6.67 eV. This is larger than the band-gap
value found using periodic B3LYP �5.7 eV� and experimen-
tal estimates of 5.5–5.8 eV.42,45 This difference is caused by
two factors: �i� the ions of the classical environment are as-
signed formal charges, which results in an overestimated
Madelung potential; and �ii� a relatively small number of
atoms in the QM cluster, which leads to underestimated
bandwidths of the valence band �VB� and conduction band
�CB� and, thus, an overestimated band gap. The band gap
obtained for a 12-atom QM cluster is 6.82 eV, larger than the
value obtained for the larger cluster. As the charges of the
classical atoms are reduced, we observe a small reduction in

TABLE I. Comparison of the lattice constants �a�, bulk moduli
�B0�, elastic constants �Cij�, and static dielectric constants ��� in
c-ZrO2, calculated using the classical interatomic potentials, and
values obtained through experiment or periodic ab initio
calculations.

Property This work Other works

a �Å� 5.07 5.09a

B0 �GPa� 328 194b

C11 �GPa� 684 508c

C12 �GPa� 150 132c

C44 �GPa� 47 78c

� 13.3 31.8d

aReference 63.
bReference 64.
cReference 65.
dReference 66.
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the atomic charges in the QM cluster by less than 0.1�e� as
well as a reduction in the band gap.

The valence band is composed mainly of O 2p states with
a small contribution from Zr d states, while the conduction
band is composed mainly of the 4d states of Zr. The detailed
structure of one-electron levels calculated using the embed-
ded cluster method matches that of the periodic calculation:
states up to 2 eV below the top of the valence band are
composed almost exclusively of equivalent linear combina-
tions of O 2p orbitals. The bottom of the conduction band is
split into two subbands, the lowest one composed of d�z2�
and d�x2−y2� states, and the upper one formed from d orbit-
als of the other symmetries. These bands are split by about
0.7 eV.

C. Charge distribution

The natural orbital population analysis �NPA� of the em-
bedded QM cluster charge density shows that the atomic
charges in the QM cluster depend only slightly on their rela-
tive positions: Zr atoms near the center of the QM cluster
and those at the border have average atomic charge values of
+2.8�e� and +3.0�e�, respectively. Similarly, average charges
of the O atoms are −1.4�e� and −1.5�e� in the central part and
the periphery of the QM cluster, respectively. Atomic charges
obtained using Mulliken population analysis show a differ-
ence of less than 0.1�e� from those obtained using NPA. In
comparison, the Mulliken charges obtained from the periodic
model calculations are smaller: +2.4�e� for Zr and −1.2�e� for
O atoms.

V. STRUCTURE AND PROPERTIES OF OXYGEN
VACANCIES

Having validated the embedded cluster model for the per-
fect crystal, we apply this method to one of the most com-
mon defects found in ZrO2: the oxygen vacancy. Oxygen
vacancies are usually found in formal charge states of +2�e�,
+1�e�, and 0�e�, although recent studies in the related oxide

HfO2 suggest that charge states of −1�e� and −2�e� are also
possible �see Ref. 25 for an overview�. Therefore, here we
consider five vacancy charge states: V2+, V+, V0, V−, and V2−.
In each case we remove the oxygen atom nearest to the cen-
ter of the QM cluster to create a vacancy �see Fig. 3� and
then minimize the total energy with respect to coordinates of
all the centers in region I.

Changing the vacancy charge state induces changes to its
local atomic structure, i.e., causes significant displacements
of neighboring atoms, and affects the number and the posi-
tion of the defect levels in the band gap. For comparison, we
also consider such changes for the V0 and V2+ using the
periodic model and the same methodology as described in
Sec. III for ideal ZrO2.

A. Local geometry

In the perfect crystal, an oxygen atom is coordinated with
four Zr atoms in a tetrahedral arrangement. Our results sug-
gest that that the removal of an oxygen atom to create a
vacancy does not produce significant distortions of the tetra-
hedron formed by neighboring Zr atoms. However, atom-
atom distances in the neighborhood of the defect change ac-
cording to its charge state. Table II shows vacancy-induced
displacements of V-Zrnn atoms from their lattice sites in the
nondefective lattice. We notice that the Zrnn displacements
are almost exactly radial, i.e., either to or away from the
vacancy site, and they are symmetrical for the positively
charged vacancies and asymmetrical for the negatively
charged ones. In particular, in the case of V2+, the four Zrnn
atoms displace from the vacancy site by about 0.2 Å or 10%
of the Zr-O bond length, which is to be compared with a
displacement of 8% obtained using the periodic model. The
relaxation is smaller for V+, where the Zrnn atoms displace
from the vacancy site by about 0.1 Å or 5% of the Zr-O
bond length. In the negatively charged vacancies V− and V2−

the displacements of Zrnn vary from atom to atom and range
from 1% to 10% of the Zr-O bond length. In the case of V0,
the Zrnn atoms displace toward the vacancy site by about
0.03–0.06 Å, which is similar to the Zr displacements of
0.04 Å in average found in the periodic model calculations.
Magnitudes of displacements of other atoms in region I are
shown in Fig. 5.

FIG. 4. Atom-projected densities of states �DOSs� calculated
using the embedded cluster �top� and periodic �bottom� models. The
DOSs are shifted so as the top of the valence band is at 0.0 eV.

TABLE II. Vacancy-induced displacements of Zrnn atoms from
their respective sites in the ideal lattice. Positive and negative val-
ues correspond to displacements from and toward the vacancy,
respectively.

Displacements �Å�

Zr1 Zr2 Zr3 Zr4

V2+ +0.20 +0.21 +0.21 +0.20

V+ +0.08 +0.12 +0.12 +0.08

V0 −0.06 −0.04 −0.03 −0.05

V− −0.08 −0.06 −0.02 −0.19

V2− −0.10 −0.08 −0.06 −0.20
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The oxygen atoms in next-nearest-neighbor �nnn� posi-
tions from the vacancy site also displace from their original
positions: they move toward the positively charged vacancies
and away from the negatively charged vacancies. In the case
of V2+, the magnitude of these displacements is on the order
of 0.2 Å, i.e., about 9% on average with respect to the origi-
nal Zr-Onnn bond length in both the periodic and cluster mod-
els, with two of the eight V-O distances being 0.1 Å shorter
than the others. In the other vacancy charge states, the mag-
nitude of the oxygen atom displacements is smaller, ranging
between 0.03 and 0.1 Å for V+ and V−, and between 0.03
and 0.06 Å for V2−. The displacements in the case of the
neutral vacancy are below 0.03 Å.

We notice that the relaxation around the vacancies does
not follow the cubic symmetry of the lattice. We attribute this
to different factors for different charge states. In the case of
the positively charged and neutral vacancies, the slight varia-
tions in the displacement of Zr atoms neighboring to the
vacancy is due to a choice of the QM cluster, which is non-
symmetrical with respect to the vacancy site �see Fig. 3�. In
the case of negatively charged vacancies, the extra electrons,
“spilled over” from the vacancy site onto the nearby Zr at-
oms, induce a noticeably large displacement of one Zr atom.
A similar effect has been observed in periodic model calcu-
lations of cubic HfO2.46–48 We attribute it to the tendency of
forming one-center electron polarons �discussed earlier for
monoclinic HfO2 �Refs. 25 and 26��, which can be enhanced
by the presence of the vacancy.

The spatial extent of the ionic relaxation is closely related
to the vacancy charge state. Figure 5 shows the atomic dis-
placements at different distances from the vacancy site cal-
culated for five charge states. In all cases the displacements
decrease gradually with the distance from the vacancy, but
displacements induced by charged vacancies exceed 0.1 Å
at distances of up to 8 Å from the vacancy. The neutral
vacancy does not induce a significant relaxation beyond
�2 Å from the vacancy, which corresponds to the first co-
ordination sphere of Zrnn atoms. This shows that the typical
supercell sizes used in periodic calculations �on the order of
10 Å� do not account fully for the relaxation effects induced

by charged vacancies in this system, and explains the differ-
ence in the values of Zrnn displacements calculated using the
embedded cluster and periodic models. One can also expect
significant variations in the properties of charged vacancies
at different positions relative to a NC surface, caused by both
electrostatic potential variation and the extent of structural
distortion.

B. Charge distribution

The charge-density distribution around the vacancies has
been analyzed using the NPA method and compared to that
in the defect-free system �see Table III�. In the case of V0,
nearly 1/3 of the electron charge is transferred from the va-
cancy to each of its Zrnn neighbors. This reduces to �0.1�e�
in the case of V+. For the doubly charged V2+, we find the
opposite effect: Zrnn atoms become more positive than they
are in the ideal crystal. In the case of negatively charged
vacancies the electron charge spills over from the vacancy to
the Zrnn atoms, similarly to the V0 case. Such delocalization
of the electron density over nn cations has also been ob-
served in HfO2.25 Comparative analysis of the spin-density
distributions in V+ and V− also suggests that the excess elec-
trons are not confined to the vacancy: the spin density occu-
pies the center of the vacancy in V+, while in V− it is located
in three of the four nearest-neighbor zirconium atoms; this
difference in the character of electron localization is reflected
in the relaxation pattern around positively charged and nega-
tively charged vacancies. Interestingly, the electron charge
associated with the basis set of the vacancy is nearly the
same in V0, V−, and V2−.

C. Electronic structure

Vacancies in ionic compounds induce the formation of
localized electron levels, located in the band gap or inside
the valence and conduction bands. Detailed analysis of these
levels sheds light on the electronic and optical properties of
these defects. However, comparing the relative positions of
these states in the energy diagram is not a trivial task, as
different charge states of the vacancy may produce non-
negligible differences in the band gap of the cluster. To lo-
cate the levels induced by the vacancy in each calculation,
we used as a reference the lowest energy state corresponding
to the conduction band. This choice allows us to relate the
position of a particular localized level with the correspond-

FIG. 5. Vacancy-induced displacements of atoms from their
lattice sites. The displacements were calculated for all atoms in
region I.

TABLE III. Vacancy-induced changes in atomic NPA charges on
Zrnn centers calculated with respect to the corresponding values in
the ideal lattice. Charge associated with the basis functions posi-
tioned at the vacancy site is shown as Q�V�.

�Q�Zr1� �Q�Zr2� �Q�Zr3� �Q�Zr4� Q�V�

V2+ +0.13 +0.08 +0.07 +0.12 −0.01

V+ −0.09 −0.07 −0.08 −0.09 −0.14

V0 −0.33 −0.27 −0.27 −0.30 −0.21

V− −0.44 −0.43 −0.38 −0.59 −0.22

V2− −0.59 −0.58 −0.47 −0.69 −0.22
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ing optical transition from this level to the conduction band.
In this location procedure it is important to differentiate

resonant levels in the conduction-band states from true
conduction-band states; the position and number of the
former depends on the charge state of the vacancy. In the
case of oxygen vacancies in c-ZrO2, the resonant states are
much more localized than the conduction-band states, and a
simple inspection of the contributions of the different atoms
to the orbitals of these states is enough to pinpoint them.

One-electron energy levels calculated for the oxygen va-
cancies in c-ZrO2 are shown in Fig. 6. The first interesting
feature to note is the absence of V2+-induced defect levels in
the gap. The level corresponding to this charge state is about
0.1 eV higher than the lowest unoccupied molecular-orbital
�LUMO� state; the corresponding state has an approximately
spherical symmetry, and it is composed mainly of Zr d con-
tributions from the nearest neighbors with some small con-
tribution from the next-nearest-neighbor O atoms.

V+ and V0 centers produce a series of one-electron levels
in the gap and in the conduction band. Positions of these
levels are shown in Fig. 6. The occupied defect level is lo-
cated in the middle of the gap, at 2.7 and 3.5 eV, below the
bottom of the conduction band. As in the V2+ case, this state
has approximately spherical symmetry �see the isosurface of
the wave function of this state in Fig. 7�a��, and it is formed
from a combination of d orbitals from the nearest-neighbor
Zr atoms and next-nearest-neighbor O atoms, although in
this case the contribution of the O states is larger.

A V+ center also produces an unoccupied spin-down level
in the upper region of the gap, 0.8 eV below the conduction-
band minimum �CBM�, of the same symmetry as the spin-up
state in the middle of the gap. These defects also create reso-
nant states in the conduction band. Three states, located 0.3,
1.0, and 1.1 eV, above the CBM were found for V+. The
same number of states, although located 0.4, 0.3, and 0.2 eV
below the CBM, were found for V0. The symmetry of the
wave function for these three states is shown in Figs.
7�b�–7�d�. It can be observed that in these states the s-like
shape of the vacancy state is replaced by combinations of d

orbitals of the nearest-neighbor Zr atoms that surround the
vacancy position but do not fill it.

The negatively charged vacancies produce a group of lo-
calized levels similar to those produced by the neutral va-
cancy, with the following modifications. First, the midgap
level observed in V0 lowers its energy by about 0.7 eV in V−

and by 0.1 eV in V2−. Second, one of the vacancy-induced
localized levels near the CBM becomes occupied and drops
to 2.2 eV in the case of V− and to 1.6 eV in the case of V2−.
Third, several localized states are created in the CBM region:
two �-spin states and one �-spin state in the case of V−, and
two doubly occupied states in the case of V2−. No resonant
states have been observed in higher-energy regions of the
conduction band for these two charge states.

To investigate the effect of the lattice relaxation on the
energies of the localized levels, we considered V+ and V−

centers and restricted the lattice relaxation to the two neigh-
boring shells of QM atoms. The resulting nn-cation displace-
ments are similar to those obtained in fully relaxed systems,
but the nnn-oxygen displacements are smaller. However, the
positions of the one-electron levels are strongly affected. In
particular, the midgap and upper-gap levels of V+ are 0.9 and
0.5 eV, respectively, lower than in the case of the fully re-
laxed geometry. On the other hand, the midgap and upper-
gap levels of V− are both 0.4 eV higher in energy.

To study the effect of QM cluster size, we performed a
calculation of V0 in a model with a smaller QM region, con-
sisting of four Zr ions and seven O ions surrounding the
vacancy. In this model, the geometry relaxation around the
vacancy is similar to that observed in the previous model,
with displacements of Zrnn ions around 0.03 Å toward the
vacancy site and displacements of about 0.01 Å of the Onnn
ions. Due to small number of atoms the band gap is in-
creased to 8.3 eV, which is almost 2 eV larger than in the
large cluster case. The middle-gap occupied level is split by
3.6 eV from the valence-band maximum �VBM�. The reso-
nant levels are split by between 0.8 and 0.5 eV from the
CBM, which is about 0.3 eV lower than in the large-cluster

V 2+ V + V 0 V − V 2−
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FIG. 6. One-electron defect level diagram for oxygen vacancies
in c-ZrO2, calculated using the embedded cluster method. Continu-
ous lines refer to occupied levels, while dashed lines correspond to
unoccupied levels. � and � symbols mark spin-up and spin-down
one-electron states, respectively.

FIG. 7. �Color online� Isosurface representation �value
=0.047 e Å−3� of one-electron states associated with the neutral
oxygen vacancy in c-ZrO2: �a� the doubly occupied midgap state;
��b�–�d�� unoccupied resonant states inside the conduction band
�shown in the order of increasing energy�. Zr and O atoms are
shown with bright and dark spheres, respectively. The vacancy site
is indicated with an arrow on each state.

MUÑOZ RAMO et al. PHYSICAL REVIEW B 78, 235432 �2008�

235432-8



case. These results indicate that using a small QM region
may lead to large errors in determining the band gap of the
system.

D. Optical and magnetic properties

Accurate calculations of spectroscopic characteristics
such as the optical-absorption spectrum and EPR g tensor are
very important for the identification of defects and, in this
particular case, can help to determine which charge states of
the oxygen vacancy can be present in c-ZrO2 NCs. Within
our embedded cluster scheme these properties are straight-
forward and relatively inexpensive to calculate.

In particular, optical transitions in c-ZrO2 with an oxygen
vacancy can be classified into seven types, as illustrated in
Fig. 8. Band-to-band transitions �type I in Fig. 8� in the per-
fect lattice cluster begin at 6.0 eV. The excitation energies of
these transitions are almost unaffected by the charge state of
the vacancy and range from 5.95 eV in V2+ to 6.05 eV in V0.
Transitions involving the localized levels created by the pres-
ence of the vacancy are shown in Table IV. It can be seen
from the table that almost all charge states of the vacancy
present transitions around 2.5 eV, corresponding to type V
transitions, and transitions between 5.0 and 5.7 eV corre-
sponding to type III transitions. Transitions around 3.2 eV
may correspond to either type V for V+ or type IV for nega-

tively charged vacancies. Transitions below 1.0 eV, corre-
spond to type VI and are only present in V− and V2−.

We have also calculated the g tensor for paramagnetic V+

and V− centers. The obtained principal values are g1=1.946,
g2=1.949, and g3=1.961 for V+, and g1=1.898, g2=1.945,
and g3=1.972 for V−.

VI. DISCUSSION AND CONCLUSIONS

We implemented the embedded cluster model for the
study of cubic nanocrystalline zirconia and calculated the
electronic structure and properties of oxygen vacancies. Five
vacancy charge states, from +2�e� to −2�e�, have been ana-
lyzed, and the spectroscopic properties of these charge states
have been calculated in order to provide guidance to possible
experimental measurements.

Comparison of the theoretical results with experimental
data for c-ZrO2 is not easy, as measurements on bulk
samples can only be performed at high temperatures or with
large amounts of doping, and spectroscopic data of cubic
NCs have not yet been reported. However, the high symme-
try and derived reduced computational cost of ab initio cal-
culations on this phase have favored its use as a model for
the study of the monoclinic phase. This has been justified by
the similarities in the band gap, nature of bands, and, in the
case of oxygen vacancies, similar environment around the
defect in the two phases44,49,50 and calculations on interfaces
between ZrO2 and transition metals.13,51

In terms of comparison with experimental data, optical-
absorption experiments in m-ZrO2 show a signal at about 2
eV above the VBM attributed to the presence of oxygen
vacancies.43 The closest time-dependent density-functional
theory �TDDFT� value in our calculations corresponds to
transitions of types IV and V in V+ and V0.

The EPR spectra measured for m-ZrO2 in different
conditions52–56 have been associated with defects. These
works report a g tensor with g���=1.961 and g���=1.976
values. The identity of these paramagnetic species is still
unclear: the main candidates include oxygen vacancies, im-
purities in the crystal, and Zr3+ states. Our calculated values
for the g-tensor components of the V+ center are close to the
experimental value, although the symmetry of the g tensor is
different.

Comparison with the cation-stabilized cubic phase of
ZrO2 is less straightforward, as the presence of the dopant
cation can cause significant modifications of the electronic
structure of the material, inducing a different distribution of
localized levels in the gap and different spectroscopic fea-
tures. In addition, evidence of vacancy pairing has been
found in both experimental and theoretical studies,3,4 which
can also affect strongly the one-electron spectrum of the sta-
bilized phase with respect to that of the pure cubic phase. Ab
initio calculations performed so far on this system seem to
point to this last feature as being the determining factor in
the distribution of the electronic levels of the vacancy in the
case of Y- and Ca-stabilized zirconia, as the contribution of
these cations to the states in the gap region is negligible.3,57

Studying the properties of defects in stabilized phases is
beyond the scope of this paper �see Ref. 58 for more discus-

FIG. 8. Optical transition types for oxygen vacancies in c-ZrO2:
�I� band-to-band transitions, �II� VB to resonant state transitions,
�III� VB to unoccupied vacancy levels in the gap transitions, �IV�
middle-gap state to CB transitions, �V� middle-gap state to resonant
state transitions, �VI� shallow-gap state to CB transitions, and �VII�
shallow-gap state to resonant state transitions. Note that resonant
states in the embedded cluster calculations are split from the CBM.

TABLE IV. Optical-absorption energies �in eV� calculated for
oxygen vacancies in c-ZrO2. Only most intense transitions are in-
cluded. The nature of each type of transition is shown in Fig. 8.

V2+ V+ V0 V− V2−

Type II 6.00 6.31

Type III 5.25 5.66 5.02 5.53

Type IV 2.02 2.77 3.38 3.25

Type V 2.54, 3.20, 3.40 2.47 2.84 2.86

Type VI 0.78 0.29

Type VII
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sion�. Nonetheless, there are hints suggesting that the single-
vacancy c-ZrO2 model can grasp some of the physics of the
yttrium-stabilized phase. In particular, EPR measurements on
yttrium-stabilized zirconia after electroreduction or radiation
processes59–61 exhibit a signal with g���=1.972 and
g���=1.996 that has been attributed to a V+ center and is
close to our theoretical estimate for V+. In addition, samples
irradiated with low-energy ions61,62 show absorption bands at
2.44 and 3 eV; the first value has been proposed to corre-
spond to neutral oxygen vacancies or V+ centers. Our calcu-
lated type IV and V transitions for V+ and V0 agree with this
value.
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